抗HER2阳性乳腺癌靶向治疗药物耐药策略的临床前研究进展

朱鋆芳, 聂旭阳, 高敬林, 孙亚棋, 冯章英, 王明霞

中国药学杂志 ›› 2023, Vol. 58 ›› Issue (7) : 553-559.

PDF(983 KB)
PDF(983 KB)
中国药学杂志 ›› 2023, Vol. 58 ›› Issue (7) : 553-559. DOI: 10.11669/cpj.2023.07.001
综述

抗HER2阳性乳腺癌靶向治疗药物耐药策略的临床前研究进展

  • 朱鋆芳1, 聂旭阳1, 高敬林1, 孙亚棋1, 冯章英1, 王明霞1,2*
作者信息 +

Advances in Preclinical Research on Drug Resistance Overcoming Strategies of Anti-HER2-Positive Breast Cancer Targeted Therapy

  • ZHU Yun-fang1, NIE Xu-yang1, GAO Jing-lin1, SUN Ya-qi1, FENG Zhang-ying1, WANG Ming-xia1,2*
Author information +
文章历史 +

摘要

人类表皮生长因子受体2(human epidermal growth factor receptor type 2,HER2)的过度表达是乳腺癌患者预后不良的重要因素之一。近年来,针对HER2的靶向药物显著改善HER2阳性乳腺癌患者的预后、延长生存期,但原发性耐药或在治疗过程中产生的获得性耐药最终仍会导致疾病进展甚至转移。目前抗HER2肿瘤药物的耐药策略研究尚不完善;但随之增多的耐药机制方面的探讨,有助于对抗耐药疗法进行甄别和筛选,同时也促进了更多新药的开发。因此,笔者综述了抗HER2阳性乳腺癌靶向治疗代表药物耐药策略的最新进展,以期为临床制定应对耐药的有效策略或个性化治疗方案提供参考。

Abstract

Overexpression of human epidermal growth factor receptor type 2 (HER2) is one of the important factors for poor prognosis of breast cancer patients. In recent years, HER2-targeted drugs have significantly improved the prognosis and prolonged survival of HER2-positive breast cancer patients, but primary drug resistance or acquired drug resistance during treatment will eventually lead to disease progress and even metastasis. At present, the research on the drug resistance overcoming strategy of anti-HER2 tumor drugs is not perfect. The increasing exploration on the drug resistance mechanism will aid in the identification and screening of therapies to promote the development of more new drugs. Therefore, this paper summarizes the latest research progress in drug resistance overcoming strategies of typical drugs for anti-HER2-positive breast cancer targeted therapy, in order to provide a reference for clinical development of effective strategies or personalized treatment plans to deal with drug resistance.

关键词

人表皮生长因子受体2 / 人类表皮生长因子2阳性乳腺癌 / 靶向治疗 / 抗人类表皮生长因子受体2疗法 / 耐药策略

Key words

human epidermal growth factor receptor type 2 / HER2-positive breast cancer / targeted therapy / anti-HER2 therapy / drug resistance strategy

引用本文

导出引用
朱鋆芳, 聂旭阳, 高敬林, 孙亚棋, 冯章英, 王明霞. 抗HER2阳性乳腺癌靶向治疗药物耐药策略的临床前研究进展[J]. 中国药学杂志, 2023, 58(7): 553-559 https://doi.org/10.11669/cpj.2023.07.001
ZHU Yun-fang, NIE Xu-yang, GAO Jing-lin, SUN Ya-qi, FENG Zhang-ying, WANG Ming-xia. Advances in Preclinical Research on Drug Resistance Overcoming Strategies of Anti-HER2-Positive Breast Cancer Targeted Therapy[J]. Chinese Pharmaceutical Journal, 2023, 58(7): 553-559 https://doi.org/10.11669/cpj.2023.07.001
中图分类号: R965   

参考文献

[1] DERAKHSHANI A, REZAEI Z, SAFARPOUR H, et al. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy[J]. J Cell Physiol, 2020, 235(4):3142-3156.
[2] HE X T, WANG S, ZHANG Z Z, et al. Clinical research progress of targeted therapy drugs for HER2-positive breast cancer[J]. Drug Eval Res(药物评价研究), 2021, 44(12):2697-2704.
[3] CHAKRABARTY A, BHOLA N E, SUTTON C, et al. Trastuzumab-resistant cells rely on a HER2-PI3K-FoxO-survivin axis and are sensitive to PI3K inhibitors[J]. Cancer Res, 2013, 3(3):1190-1200.
[4] SANZ-ÁLVAREZ M, MARTÍN-APARICIO E, LUQUE M, et al. The novel oral mTORC1/2 inhibitor TAK-228 reverses trastuzumab resistance in HER2-positive breast cancer models[J]. Cancers (Basel), 2021, 13(11):2778-2800.
[5] O′BRIEN N A, HUANG H K T, MCDERMOTT M S J, et al. Tucatinib has selective activity in HER2-positive cancers and significant combined activity with approved and novel breast cancer-targeted therapies[J]. Mol Cancer Ther, 2022, 21(5):751-761.
[6] NISHIMURA R, TOH U, TANAKA M, et al. Role of HER2-related biomarkers (HER2, p95HER2, HER3, PTEN, and PIK3CA) in the efficacy of lapatinib plus capecitabine in HER2-positive advanced breast cancer refractory to trastuzumab[J]. Oncology, 2017, 93(1):51-61.
[7] TÓTH G, SZÖÖR Á, SIMON L, et al. The combination of trastuzumab and pertuzumab administered at approved doses may delay development of trastuzumab resistance by additively enhancing antibody-dependent cell-mediated cytotoxicity[J]. MAbs, 2016, 8(7):1361-1370.
[8] WANG L, YU C F, YANG Y L, et al. Biological effects of trastuzumab and T-DM1 on different breast cancer lines[J]. Chin Pharm J(中国药学杂志), 2016, 51(13):1096-1100.
[9] JI L T, XU T J, YIN W, et al. m6 A demethylase FTO promotes the resistance of HER2-positive breast cancer cell to trastuzumab[J]. Acta Univ Med Anhui(安徽医科大学学报), 2021, 56(12):1885-1890.
[10] SHU M, YAN H, XU C, et al. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo[J]. Sci Rep, 2020, 10(1):2986-2997.
[11] WU G, LI L, QIU Y, et al. A novel humanized MUC1 antibody-drug conjugate for the treatment of trastuzumab-resistant breast cancer[J]. Acta Biochim Biophys Sin, 2021, 53(12):1625-1639.
[12] SUN B, MASON S, WILSON R C, et al. Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers[J]. Oncogene, 2020, 39(1):50-63.
[13] XU T, CHEN P, FUO D, et al. Everolimus synergize with lapatinib reduced the resistance of HER2-positive breast cancer to lapatinib[J]. Genomics Appl Biol(基因组学与应用生物学), 2020, 39(5):2411-2417.
[14] CHEN P, XU T, GUO D, et al. The role of YAP protein in lapatinib resistance in HER2-positive breast cancer[J]. Acta Acad Med Mil Tert(第三军医大学学报), 2020, 42(7):692-698.
[15] KACZYŃSKA A, HERMAN-ANTOSIEWICZ A. Combination of lapatinib with isothiocyanates overcomes drug resistance and inhibits migration of HER2-positive breast cancer cells[J]. Breast Cancer, 2017, 24(2):271-280.
[16] SUDHAN D R, GUERRERO-ZOTANO A, WON H, et al. Hyperactivation of TORC1 drives resistance to the Pan-HER tyrosine kinase inhibitor neratinib in eR2-mutant cancers[J]. Cancer Cell, 2020, 37(2):183-199.
[17] BRESLIN S, LOWRY M C, O′DRISCOLL L. Neratinib resistance and cross-resistance to other HER2-targeted drugs due to increased activity of metabolism enzyme cytochrome P4503A4[J]. Br J Cancer, 2017, 116(5):620-625.
[18] TAKEDA T, YAMAMOTO H, SUZAWA K, et al. YES1 activation induces acquired resistance to neratinib in HER2-amplified breast and lung cancers[J]. Cancer Sci, 2020, 111(3):849-856.
[19] WANG Y, YUAN X, LI J, et al. The synergistic effects of SHR6390 combined with pyrotinib on HER2+/HR+ breast cancer[J]. Front Cell Dev Biol, 2021, 9:785796. Doi: 10.3389/fcell.2021.785796.
[20] ZHANG K, HONG R, LEE K, et al. CDK4/6 inhibitor palbociclib enhances the effect of pyrotinib in HER2-positive breast cancer[J]. Cancer Lett, 2019, 447:130-140.
[21] ZHAO Z W, YAO Y Q. Clinical observation of the chemotherapy-resistant effect on Pyrotinib combined Huaier Granule in treatment of advanced breast cancer with human epidermal growth factor receptor-2 positive[J]. Clin J Med Off(临床军医杂志), 2020, 48(3):284-286.
[22] KOVTUN Y V, AUDETTE CA, MAYO M F, et al. Antibody-maytansinoid conjugates designed to bypass multidrug resistance[J]. Cancer Res, 2010, 70(6):2528-2537.
[23] SAATCI Ö, BORGONI S, AKBULUT Ö, et al. Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer[J]. Oncogene, 2018, 37(17):2251-2269.
[24] YAMASHITA-KASHIMA Y, SHU S, OSADA M, et al. Combination efficacy of pertuzumab and trastuzumab for trastuzumabemtansine-resistant cells exhibiting attenuated lysosomal trafficking or efflux pumps upregulation[J]. Cancer Chemother Pharmacol, 2020, 86(5):641-654.
[25] OCAÑA A, AMIR E, PANDIELLA A. HER2 heterogeneity and resistance to anti-HER2 antibody-drug conjugates[J]. Breast Cancer Res, 2020, 22(1):15-17.
[26] TAMURA K, TSURUTANI J, TAKAHASHI S, et al. Trastuzumabderuxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumabemtansine: a dose-expansion, phase 1 study[J]. Lancet Oncol, 2019, 20(6):816-826.
[27] TAKEGAWA N, NONAGASE Y, YONESAKA K, et al. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance[J]. Int J Cancer, 2017, 141(8):1682-1689.
[28] ELGERSMA R C, COUMANS RG, HUIJBREGTS T, et al. Design, synthesis, and evaluation of linker-duocarmycin payloads: toward selection of HER2-targeting antibody-drug conjugate SYD985[J]. Mol Pharm, 2015, 12(6):1813-1835.
[29] BANERJI U, VAN HERPEN C M L, SAURA C, et al. Trastuzumabduocarmazine in locally advanced and metastatic solid tumours and HER2-expressing breast cancer: a phase 1 dose-escalation and dose-expansion study[J]. Lancet Oncol, 2019, 20(8):1124-1135.
[30] NADAL-SERRANO M, MORANCHO B, ESCRIVÁ-DE-ROMANÍ S, et al. The second generation antibody-drug conjugate SYD985 overcomes resistances to T-DM1[J]. Cancers (Basel), 2020, 12(3):670-683.
[31] SKIDMORE L, SAKAMURI S, KNUDSEN N A, et al. ARX788, a site-specific anti-HER2 antibody-drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1-resistant breast and gastric cancers[J]. Mol Cancer Ther, 2020, 19(9):1833-1843.
[32] BAROK M, LE JONCOUR V, MARTINS A, et al. ARX788, a novel anti-HER2 antibody-drug conjugate, shows anti-tumor effects in preclinical models of trastuzumabemtansine-resistant HER2-positive breast cancer and gastric cancer[J]. Cancer Lett, 2020, 473:156-163.
[33] IRIE H, KAWABATA R, FUJIOKA Y, et al. Acquired resistance to trastuzumab/pertuzumab or to T-DM1 in vivo can be overcome by HER2 kinase inhibition with TAS0728[J]. Cancer Sci, 2020, 111(6):2123-2131.
[34] GANDULLO-SÁNCHEZ L, CAPONE E, OCAÑA A, et al. HER3 targeting with an antibody-drug conjugate bypasses resistance to anti-HER2 therapies[J]. EMBO Mol Med, 2020, 12(5). Doi: 10.15252/emmm.201911498.

基金

科技部十三五新药创制重大专项项目资助(2020ZX09201006-003);河北省自然基金重点项目资助(H2021206432);河北省医学科学研究重点课题计划项目资助(20200105)
PDF(983 KB)

Accesses

Citation

Detail

段落导航
相关文章

/